剑指Java自研框架,决胜Spring源码
2022-05-03 10:49:24
xudabang
刚到实验室,他就独自拥有一台Sun 4计算机;而此前在多伦多,同样一台计算机则由40个人共用。在贝尔实验室,做数字识别研究,他可以使用美国邮政近万张真实手写图像;作为对比,之前他只能利用一个很小的手工数据集来测试卷积网络。入职两个月,他就创造了以自己名字命名的LeNet,在数字识别方面创造了纪录。
常规的同行评审往往“过于合理”,以至颠覆性的研究很难找到真正的同行。对于“不合理”的方向,方向内的“小同行”更有发言权,而且他们知道谁是最优秀的人。
即使到2006年,参与评审杨立昆论文的人工智能同行也对他并不宽容。因为彼时的深度学习,还是一个不受重视的小方向,杨立昆2004—2006年关于这个方向的文章,几乎被最重要的学术会议——ICML(国际机器学习大会)、NeurIPS、CVPR、ICCV(国际计算机视觉大会)等都拒绝了。
2006年之后,随着他们的人际圈逐渐扩大,审阅专家才普遍开始支持他们的工作。不过即便这样,2007年在向NeurIPS组织者提出举办一个深度学习研讨会时,还是被否决了。还好他们有CIFAR(加拿大高等研究院)提供的资金,“私设”了一个研讨会,有300多位参与者,成了那年NeurIPS上最受欢迎的研讨会。
黄金时代的工业实验室曾是变革性技术最重要的发源地,例如杨立昆工作与实习过的贝尔实验室和施乐帕克研究中心(Xerox PARC)。而如今,虽然这些工业实验室仍然存在,却不再像20世纪中叶那样有效。仔细观察你会发现,黄金时代的工业实验室需要的条件,今天不容易复制,例如,几乎占据垄断的行业地位、前沿研究主要依靠内部完成、研究可以高效地为企业创造利润等。