Spring Cloud微服务安全实战

2022-05-03 11:19:48 xudabang

抱怨的主要理由是机器消耗的能源远高于人类大脑。我认为这种抱怨是片面的,人类棋手大脑的功耗确实只有数十瓦,但训练一个人类棋手要花费十多年时间。更重要的是,人类棋手学围棋时是带着大脑这个先天基础的,这颗大脑是亿万年进化来的,消耗了巨大的太阳能,这都应该记到能耗的总账中。这样比较,到底是机器棋手还是人类棋手能耗更大呢?

从节省能源角度看,机器智能确实不应该从头再进化一次,而是应该以进化训练好的生物神经网络为基础,这就是纯粹的连接主义:构造一个逼近生物神经网络的人工神经网络。1950年,图灵的开辟性论文《计算机与智能》中就表达了这个观点:“真正的智能机器必须具有学习能力,制造这种机器的方法是:先制造一个模拟童年大脑的机器,再教育训练它。”这也是类脑智能或神经形态计算的基本出发点。相关科研实践开始于20世纪80年代,基本理念就是构造逼近生物神经网络的神经形态光电系统,再通过训练与交互,实现更强的人工智能乃至强人工智能。

除了改进训练对象的先天结构,训练不可或缺的另一个要素是环境。环境才是智能的真正来源,不同环境孕育不同智能。人们往往把今天人工智能系统的成功归结为三个要素:大数据+大算力+强算法,其中数据是根本,另外两个要素主要影响效率。训练更强智能,需要更大数据,这是智能发展的基本规律。有人提出“小数据”方法和小样本学习,标榜要颠覆大数据方法,给出的典型理由是人类和动物能够举一反三,不需要大数据。这种观点貌似有道理,其实言过其实,因为他们忘记或者故意隐瞒了实现举一反三的主体是大脑,而大脑本身是“进化大数据”训练的结果。所谓小数据方法,是以大数据“预训练”为前提的。仅靠小数据不可能训练出复杂智能,道理很简单——小数据没有蕴含足够的可能性和复杂性,所谓的强大智能又从何而来呢






首页
参与众筹
目录
得道
极克
看里想
商业财经
自我提升
工科技术
人文社科